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IMPORTANCE The hippocampus is a highly epileptogenic brain region, yet over 90% of

hippocampal epileptiform activity (HEA) cannot be identified on scalp electroencephalogram

(EEG) by human experts. Currently, detection of HEA requires intracranial electrodes, which

limits our understanding of the role of HEA in brain diseases.

OBJECTIVE To develop and validate a machine learning algorithm that accurately detects HEA

from a standard scalp EEG, without the need for intracranial electrodes.

DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, conducted from 2008 to 2021,

EEG data were used from patients with temporal lobe epilepsy (TLE) and healthy controls

(HCs) to train and validate a deep neural network, HEAnet, to detect HEA on scalp EEG.

Participants were evaluated at tertiary-level epilepsy centers at 2 academic hospitals:

Massachusetts General Hospital (MGH) or Brigham andWomen’s Hospital (BWH). Included in

the study were patients aged 12 to 78 years with a clinical diagnosis of TLE and HCs without

epilepsy. Patients with TLE and HCs with a history of intracranial surgery were excluded from

the study.

EXPOSURES Simultaneous intracranial EEG and/or scalp EEG.

MAIN OUTCOMES ANDMEASURES Performancewas assessed using cross-validated areas

under the receiver operating characteristic curve (AUC ROC) and precision-recall curve (AUC

PR) and additional clinically relevant metrics.

RESULTS HEAnet was trained and validated using data sets that were derived from a

convenience sample of 141 eligible participants (97 with TLE and 44 HCs without epilepsy)

whose retrospective EEG data were readily available. Data set 1 included the simultaneous

scalp EEG and intracranial electrode recordings of 51 patients with TLE (mean [SD] age, 40.7

[15.9] years; 30men [59%]) at MGH. An automatically generated training data set with

972095 positive HEA examples was created, in addition to a held-out expert-annotated

testing data set with 22 762 positive HEA examples. HEAnet’s performance was validated on

2 independent scalp EEG data sets: (1) data set 2 (at MGH; 24 patients with TLE and 20 HCs;

mean [SD] age, 42.3 [16.2] years; 17 men [39%]) and (2) data set 3 (at BWH; 22 patients with

TLE and 24 HCs; mean [SD] age, 43.0 [14.4] years; 20men [43%]). For single-event detection

of HEA on data set 1, HEAnet achieved amean (SD) AUC ROC of 0.89 (0.01) and amean (SD)

AUC PR of 0.39 (0.03). On external validation with data sets 2 and 3, HEAnet accurately

distinguished TLE fromHC (AUC ROC of 0.88 and 0.95, respectively) and predicted epilepsy

lateralization with 100% and 92% accuracy, respectively. HEAnet tracked dynamic changes in

HEA in response to seizure medication adjustments and performed comparably with human

experts in diagnosing TLE from 1-hour scalp EEG recordings, diagnosing TLE in several

individuals that experts missed. Without reducing specificity, addition of HEAnet to human

expert EEG review increased sensitivity for diagnosing TLE in humans from 50% to 58% to

63% to 67%.

CONCLUSIONS AND RELEVANCE Results of this diagnostic study suggest that HEAnet provides

a novel, noninvasive, quantitative, and clinically relevant biomarker of hippocampal

hyperexcitability in humans.

JAMA Neurol. doi:10.1001/jamaneurol.2022.0888
Published online May 2, 2022.

Supplemental content

Author Affiliations:Department of
Neurology, Massachusetts General
Hospital, Boston (Abou Jaoude,
Jacobs, Jing, Pellerin, Cole, Cash,
Westover, Lam); Harvard Medical
School, Boston, Massachusetts
(Jacobs, Sarkis, Cole, Cash, Westover,
Lam); Department of Neurology,
Brigham andWomen’s Hospital,
Boston, Massachusetts (Sarkis).

Corresponding Author: Alice D. Lam,
MD, PhD, Department of Neurology,
Massachusetts General Hospital, 55
Fruit St, Wang Ambulatory Care
Center 735, Boston, MA 02114
(lam.alice@mgh.harvard.edu).

Research

JAMANeurology | Original Investigation

(Reprinted) E1

© 2022 American Medical Association. All rights reserved.

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2022.0888?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.0888
https://jamanetwork.com/journals/neu/fullarticle/10.1001/jamaneurol.2022.0888?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.0888
mailto:lam.alice@mgh.harvard.edu


T
herearenoeasilyavailablemethods toevaluate theelec-
trical activity arising fromdeep brain structures. Scalp
electroencephalogram(EEG) is theprimary toolused to

assess the brain’s electrical activity and captures electrical ac-
tivity fromthebrain’s cortical surfacewithhigh temporal reso-
lution.However,whenadjudicatedvisually, scalpEEG is rela-
tively insensitive to electrical activity arising fromdeep brain
regions, including the hippocampus.

The hippocampus is essential for memory formation and
plays an important role in many neurologic disorders, includ-
ing temporal lobe epilepsy and Alzheimer disease. In the dis-
eased state, the hippocampus is highly prone to generating ab-
normal spiking activity, or hippocampal epileptiform activity
(HEA),which can causememory impairments, psychiatric dis-
turbances, and can signal impending seizures.1-5 Up to 95% of
HEA cannot be detected using standard clinical interpretation
of scalp EEG.5-10 Currently, detection of HEA requires surgical
placement of intracranial electrodes, an invasive procedure in
whichelectrodesare inserted intooradjacent to thehippocam-
pus,where they candirectly record its electrical activity.11,12As
intracranial recordings are costly, require specialized epilepsy
centerswithsurgical expertise, andmaycarrymorbidity for the
patient, only aminority of patients with epilepsy will undergo
intracranialelectroderecordings.However, therearemanyclini-
cal and research applications where the ability to noninva-
sively monitor HEA could have an important impact, not only
on clinical care, but also on our fundamental understanding of
the neurophysiology of brain diseases.

Here, we developed and validated a deep learning algo-
rithm, HEAnet, to accurately and noninvasively detect HEA
using only information extracted from a standard scalp EEG
recording.

Methods

Clinical Data Sets

In this diagnostic study, clinical data were analyzed retrospec-
tively under a research protocol approved by MassGeneral
Brigham, the single institutional review board shared by Mas-
sachusetts General Hospital (MGH) and Brigham andWomen’s
Hospital (BWH).As the research involvedsecondaryanalysisof
existing clinical data and incurred no more than minimal risk,
therequirementfor informedconsentwaswaived.Dataset1con-
sisted of 8395 hours of simultaneous foramen ovale (FO) elec-
trode and scalp EEG recordings in patients with temporal lobe
epilepsy (TLE)whoweremonitored in theMGHepilepsymoni-
toringunit (EMU)from2008to2019.Dataset2consistedof4433
hours of scalp EEG recordings from patients with TLE, unique
from data set 1, and healthy controls (HCs) without epilepsy
monitored in theMGHEMUbetween2014and2020.Data set 3
consisted of 2137 hours of scalp EEG recordings from patients
withTLEandHCsmonitored in theBrighamandWomen’sHos-
pital (BWH) EMU between 2016 and 2021. Information on pa-
tient race and ethnicity was not readily available for these ret-
rospective convenience data sets and, therefore, was not used
in this investigation. This study followed the Standards for Re-
porting of Diagnostic Accuracy (STARD) reporting guidelines.

Clinical diagnosis of TLE was based on seizure semiol-
ogy, neurophysiologic findings, and neuroimaging. Lateral-
izationof epilepsy (ie, seizure-onset zone)wasdeterminedby
board-certified epileptologists (A.D.L., R.A.S.), taking into
account seizure onsets captured in the EMU, imaging find-
ings, andother relevant clinical details. Patients andHCswith
a history of intracranial surgery or multifocal epilepsy were
excluded. HCs underwent EMU evaluation and were deter-
minednot to have epilepsy, based on the absence of interictal
epileptiform abnormalities, capture of typical spells with ab-
sence of ictal EEG correlate, and lack of clinical suspicion for
epilepsy on follow-up assessment by a board-certified epilep-
tologist (eTables 1, 2, and 3 in the Supplement).

General Approach for Developing HEAnet

HEAnet was developed using data set 1 (simultaneous scalp
EEG andFOelectrode recordings). FO electrodes are intracra-
nial electrodes that are inserted through the cheek and fluo-
roscopically guided into the cranium through the FO.13,14The
FO electrode contacts are positioned adjacent to the mesial
temporal lobe and record hippocampal activity with high fi-
delity. Althoughmost HEA cannot be seen on scalp EEG, it is
easily identified on FO recordings. We used FO recordings to
obtain ground-truth timing information for when HEA oc-
curred and trained convolutional neural networks (CNNs) to
learn the corresponding HEA signature on the simultane-
ously recorded scalp EEG.

Design Considerations for HEAnet

Prior studiesusingscalpEEGaveragingdemonstrated thatHEA
generates a scalp EEG correlate butwith a low signal-to-noise
ratio thatprecludesvisualdetectionat thesingle-event level.6,7

Wemade several design choices to optimize our ability to de-
tect HEA at the single-event level.

First, tomaximize thesignal-to-noise ratioofHEAonscalp
EEG, we designed HEAnet to detect HEA occurring during
sleep.Large-amplitudeartifacts frommovement,myogenicac-
tivity, and eye blinks areminimizedduring sleep, and inmost
patients with TLE, HEA occurs with highest frequency dur-
ing sleep.15-18

Key Points

Question Can a computer algorithm be trained to detect

hippocampal epileptiform activity (HEA) on scalp

electroencephalogram (EEG) when human experts cannot identify

this activity?

Findings In this diagnostic study of 141 eligible participants, a

deep learning algorithmwas trained to detect HEA on scalp EEG,

using a data set of combined scalp EEG and intracranial recordings.

The algorithm accurately detected HEA at the single-event level

and performedwell on clinically relevant metrics, including

quantification and lateralization of HEA and diagnosis of temporal

lobe epilepsy.

Meaning Results of this diagnostic study suggest that a

computational algorithm can noninvasively detect HEA from scalp

EEG andmay improve diagnosis and treatment of epilepsy and

other brain diseases.
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Second, we created a massive, automatically generated
training data set of labeled HEA and non-HEA examples. De-
velopmentofmost spikedetectionalgorithmsdependsonhu-
man experts tomanually annotate spike examples to create a
training data set. This sets a practical limitation on the num-
ber of training examples that can be annotated and limits the
complexity of machine learning algorithms that can be ap-
plied.Here,weusedpreviouslydevelopedalgorithmstoscreen
the entirety of data set 1, automatically extracting all sleeppe-
riodsbasedonthescalpEEG,19andautomatically labelingHEA
(positive) andnon-HEA (negative) training examplesbasedon
theFOrecordingsusingFOnet,20adeep learningalgorithmthat
detects HEA on FO recordings (eMethods in the Supple-
ment). This generateda trainingdata setwithmore than2mil-
lion labeled scalp EEG examples of HEA during sleep, allow-
ing us to leverage deep learning algorithms to extract salient
features of HEA from raw scalp EEG.

Third, although we trained HEAnet using an automati-
cally generated training data set, we assessed its perfor-
manceonaheld-out,criterion-standard,expert-annotatedtest-
ing data set. The testing data set consisted of 51 hours of
recordings (1 hour per patient) that were independently an-
notatedby2board-certifiedepileptologists (A.D.L., C.S.J.) and
contained over 20000 positive HEA examples, based on ex-
pert consensus (eMethods in the Supplement). The training
data set for HEAnet was a balanced data set (equal number of
HEAandnon-HEAexamples),whereas the testingdataset con-
sisted of continuous EEG recordings (imbalanced, withmany
morenon-HEAthanHEAexamples).Thebalancedtrainingdata
set allowed HEAnet to best learn to distinguish HEA from
non-HEA,whereas testingoncontinuousEEGrecordingsmore
accurately represents HEAnet’s performance in real-world
settings.

CNN Training and Evaluation

Wefirst trained individualCNNs todetectHEAfromscalpEEG.
The input to each CNN was a 25 × 128 matrix representing a
500-millisecond epoch (128 samples) of preprocessed scalp
EEG data from 25 bipolar channels (eMethods in the Supple-
ment). TheCNN’s output is the probability thatHEAoccurred
in the central 250millisecondof the epoch. CNNswere evalu-
ated using 5-fold cross-validation, stratified across patients
(Figure 1). For each fold, training data came from the auto-
matically generated training data set (pooled across patients
in the training group),whereas testingdata came from the ex-
pert-annotated recordings (pooled across patients in the test-
ing group). We report cross-validated performance metrics
pooled across all testing folds (eMethods in the Supplement).

HEAnet Architecture

HEAnet is an ensemble of 6 top-performing CNN models
(Figure 2; eTables 4, 5, 6, and eMethods in the Supplement).
All CNNs are given the same 500-millisecond scalp EEG in-
put, andtheoutputofHEAnet is themeanoutputofall6CNNs.

Statistical Analysis

Populationstatisticsare reportedasmean (SD).Correlationwas
assessed using Spearman correlation coefficient. We tested

trend across groups using the Cuzick test, differences be-
tweengroupsusing theMann-WhitneyU test, andpairedcom-
parisons using the Wilcoxon signed rank test. Statistical sig-
nificance was determined as P < .05 with 2-tailed testing.
Statistical analysis was performed using Matlab 2018 (Math-
works) and the scipy.stats package (Python).

Results

HEAnet was trained and validated using data sets that were
derived from a convenience sample of 141 eligible partici-
pants (97 with TLE and 44 HCs without epilepsy) whose
retrospective EEG data were readily available. Data set 1
included the simultaneous scalp EEG and intracranial elec-
trode recordings of 51 patients with TLE (mean [SD]
age, 40.7 [15.9] years; 30 men [59%]; 21 women [41%]) at
MGH. We created an automatically generated training
data set with 972095 positive HEA examples and a held-out
expert-annotated testing data set with 22 762 positive
HEA examples. HEAnet’s performance was validated on 2
independent scalp EEG data sets: (1) data set 2 (at MGH;
24 patients with TLE and 20 HCs; mean [SD] age, 42.3
[16.2] years; 17 men [39%]; 27 women [61%]) and (2) data set
3 (at BWH; 22 patients with TLE and 24 HCs; mean [SD]
age, 43.0 [14.4] years; 20 men [43%]; 26 women [57%])
(Table).

Figure 1. Convolutional Neural Network (CNN) Training

and Performance Evaluation

41 Patients (approximately 6700 h) 10 Patients (5 h per patient
held out)

Expert labeling of scalp and
FO-EEG (1 h per patient)

Removal of expert-labeled
visible scalp EEG spikes

Performance metrics

Automated sleep staging

Automated FO spike detection

CNNi

CNNi

×5
Folds

<0.5 >THFO

Resampling

Balanced data set

Nonspikes Spikes

Training Testing

Sleep

ŶFO

For each cross-validation fold, 10 patients are set aside for testing, while the rest
of the patients are used for training. Training data were generated automatically
from recordings of the training patients, using automated algorithms for sleep
staging19 and intracranial spike detection.20 The scheme shown is for training
without an early stopping set (eMethods in the Supplement). The testing data
for each patient consists of a 1-hour expert-annotated recording. Before
applying the trained CNN and evaluating performance, all epochs that
contained visible epileptiform discharges on the scalp electroencephalogram
(EEG) were removed, to provide a rigorous demonstration of HEAnet’s
performance, independent of scalp-visible epileptiform discharges. CNNi
indicates i-th CNN; FO, foramen ovale; TH, threshold.
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Associations Between HEAnet Output, Scalp EEG Findings,

and Features of HEA on FO Electrodes

Figure 3A shows a representative 8-second recording from a
patient with TLE, highlighting detections made by HEAnet on
scalp EEG. At the single-event level, no obvious scalp EEG sig-
nature of HEA was discerned. The mean (SD) scalp EEG signal
of all the HEA epochs that were correctly detected by HEAnet
revealed a low-amplitude (19.1 [9.4] μV) deflection lasting 150
to 200 milliseconds (eFigure 1 in the Supplement). The
median latency between the mean HEA peak on FO elec-
trodes and the peak of the mean deflection on scalp EEG was
0 milliseconds (IQR, −3.91 to 97.66), suggesting that HEAnet
may detect a volume-conducted signal (eResults in the
Supplement).

We evaluatedHEAnet’s output (ŶHEA, the probability that
HEA occurs in a given epoch, based on scalp EEG input) in
association with corresponding HEA features on FO elec-
trodes. ŶHEAwasweaklybut significantly correlatedwithboth
the amplitude (mean [SD] Spearman ρ [43] = 0.26 [0.25]; 95%
CI, 0.19-0.33; P < .001) and slope (mean [SD] Spearman ρ [43]
= 0.32 [0.27]; 95%CI, 0.24-0.40;P < .001) of the correspond-
ing HEA on FO electrodes (eFigure 2 in the Supplement).

Wenext labeledtestingexamplesfromtheexpert-annotated
datasetasnegative,equivocal,orpositive,dependingonwhether
0, 1, or2experts, respectively, annotatedHEAonFOelectrodes
during thecentral250millisecondsofeachexample.Figures3B
and 3C show the population distributions of ŶHEA for all nega-
tive, equivocal, or positive HEA testing examples. Therewas a
significant trendof increasingmedianŶHEAgoing fromnegative
(0.13;IQR,0.06-0.27),toequivocal(0.34;IQR,0.14-0.64),toposi-
tive (0.58; IQR,0.26-0.92)HEAexamples (Cuzick testP < .001).
The population distribution of ŶHEA showed a peak of 0.03
(approximately 0) fornegativeHEAexamplesandapeakof0.99
(approximately 1) for positiveHEA examples.

Single-Event Level Performance of HEAnet

To evaluate HEAnet’s ability to classify positive from negative
HEAexamples,weplottedreceiveroperatingcharacteristic(ROC)
andprecision-recall (PR)curves(Figures3Dand3E).HEAnethad
amean(SD)areaunder thecurve (AUC)ROCof0.89 (0.01) (AUC
ROC for chanceprediction is0.5 and for perfect prediction is 1),
and a mean (SD) AUC PR of 0.39 (0.03) (AUC PR for chance
prediction is 0.016 [frequency of positiveHEA examples in the
testing set] and for perfect prediction is 1). Thus, HEAnet accu-
rately detectedHEA from scalp EEG at the single-event level, a
task that human experts cannot perform.

At a classification threshold that yields a positive predic-
tivevalue (PPV) of approximately 0.7,HEAnethadamean (SD)
specificity of 0.996 (0.002), a false-positive rate of 0.86
(0.34) perminute, and a sensitivity of 0.25 (0.08). At a PPV of
approximately 0.9, HEAnet had a mean (SD) specificity of
0.999 (0.001), a false-positive rate of 0.11 (0.06) per minute,
anda sensitivityof0.13 (0.05).Notably, visual analysis of false
positivedetectionsbyHEAnet (eResults,eFigure3,andeTable7
in the Supplement) revealed that 43% were false false-
positive detections, ie, HEA that had been missed during ex-
pert annotation, which suggests that HEAnet’s performance
is actually higher than reported above.

At high specificity, the sensitivity ofHEAnet at the single-
event level may initially seem suboptimal. Two consider-
ationsplace thisperformance intobetter clinical context.First,
inmanypatientswithTLE,HEAoccurs abundantly,which can
offset HEAnet’s low sensitivity. On our expert-annotated re-
cordings, HEA occurred on FO electrodes at a frequency ap-
proximately 12-fold higher than visible epileptiform dis-
chargeson scalpEEG. Inmostpatients, thenumberofHEAnet
detections (atPPV of approximately 0.9)was comparablewith
or exceeded the number of visible discharges on scalp EEG
(eTable 1 in the Supplement). Second, most clinical applica-
tions of HEAnet do not require detection of every HEA event
that occurs. Rather, for a given patient, the ability to deter-
mine whether HEA occurs at all, assess the laterality of HEA,

Figure 2. HEAnet Architecture
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Architecture of HEAnetA

Architecture of individual CNNsB

A, The input to HEAnet is a 25 channel × 128 sample (500msec) scalp
electroencephalogram (EEG) segment, which is fed into each of 6 convolutional
neural networks (CNNs). The outputs of all CNNs (ŶCNNi) are averaged to yield a
final probability (ŶHEA) that the central 250milliseconds of the input segment
contains HEA. ŶHEA is compared with the ground truth, YHEA, which is defined
based on expert annotation of the foramen ovale (FO) recordings.
B, Architecture of the individual CNNs that comprise HEAnet. The 25 channel ×
128 sample EEG is passed through a number of convolutional blocks (NB) that
are comprised of 1-dimensional (D) or 2-D convolutional filters, followed by
application of batch normalization (BN) and an activation function (relu). The
resulting signal is then passed through amaxpool layer. This sequence of
operations (convolution block + maxpool) is repeated for a number (Nconv) of
times. The resulting signal is passed through a global average pooling (GAP)
layer and a fully connected layer (FC) before a final classification is done by a
logistic regression unit (eMethods in the Supplement). HEA indicates
hippocampal epileptiform activity.
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andquantify changes inHEAover timewouldbehighly infor-
mative. We next evaluated HEAnet’s performance on these
more clinically relevant metrics.

Correlation of Cumulative Detections by HEAnet

Over TimeWith HEA Rate and Laterality

We first examined HEAnet’s ability to quantify HEA fre-
quency over longer recording periods. For testing purposes,
we held out 5 hours of sleep recording from each patient, of
which 1hourwas annotatedbyexperts. ApplyingHEAnet (op-
erating at PPV 0.7) to the expert-annotated 1-hour record-
ings,we foundamoderate correlationbetween thenumber of
detectionsmade byHEAnet on scalp EEG, and the number of
positive HEA examples labeled by experts on FO electrodes
(Spearman ρ [48] = 0.74; P < .001) (Figure 3F). We also as-
sessed HEAnet’s performance over the 5-hour held-out re-
cordings. As only 1 hour was annotated, we used previously
published algorithms to annotate the remaining 4 hours, ap-
plying FOnet20 to annotate HEA on FO recordings, and
SpikeNet,21 a previously developed deep learning algorithm
that detects visible epileptiform discharges on scalp EEG, to
annotate visible epileptiform discharges on scalp EEG
(eMethods in the Supplement). FOnet detections coinciding
with SpikeNetdetectionswere removed fromanalysis.On the
5-hour recordings, the number of detections made by HEA-
net on scalp EEG correlated closely with the number of HEA
onFOelectrodes (Spearmanρ [48]= 0.78;P < .001) (Figure3G;
eResults and eFigure 4 in the Supplement).

We also testedwhether left-right asymmetries inHEAnet
detections could be useful for predicting epilepsy lateraliza-
tion. Using the 1-hour, expert-annotated recordings, we cal-
culated asymmetry indices usingHEAnet detections on scalp
EEG (asymmetry HEA), as well as expert annotations of HEA
on FO electrodes (asymmetry EXP) (eMethods in the Supple-
ment). Asymmetry HEA and asymmetry EXP were moder-
ately correlated (Spearman ρ [48] = 0.66; P < .001) (eFigure 5
in the Supplement).

Performance of HEAnet Across Sleep and Awake States

Although HEAnet was optimized for use on sleep EEG data,
we found thatwhen applyingHEAnet to data from the awake
state, its specificity remained unchanged, although sensitiv-
ity was reduced by 30% (eTable 8 in the Supplement). Thus,
HEAnet can be applied to data that include the awake state,
without a substantial increase in false positive detections.We
foundnosignificantdifferences inHEAnet’sperformance (AUC
ROC,AUCPR) across different sleep stages (eResults, eTable 8
in the Supplement).

Validation of HEAnet on an Independent Data Set

From the Same Institution

To evaluate howHEAnet’s performance generalizes on an in-
dependentdata set,we appliedHEAnet (operating at PPV0.9)
to data set 2 (eTable 2 in the Supplement). We found that the
HEAnetdetection rate (mean [SD] total numberofHEAnetde-
tections [left and right]made per hour of nonrapid eyemove-

Table. Data Sets for Training, Testing, and External Validation of HEAnet

Variable Data set 1 (n = 51) Data set 2 (n = 44) Data set 3 (n = 46)

Institution MGH MGH BWH

Type of recording Scalp EEG and FO
electrodes

Scalp EEG (full-length
recordings)

Scalp EEG (full-length and
clipped recordings)

Use for HEAnet Training and testing Independent validation
(within same institution)

Independent validation
(from external institution)

Patient, No. (%)

TLE 51 (100) 24 (54.5) 22 (47.8)

HC 0 20 (45.5) 24 (52.2)

Age, mean (SD), y

TLE 40.7 (15.9) 42.1 (15.1) 47.7 (14.4)

HC 0 42.6 (17.1) 38.7 (13)

Men, No. (%)

TLE 30 (59) 12 (50) 12 (55)

HC 0 5 (25) 8 (33)

Women, No. (%)

TLE 21 (41) 12 (50) 10 (45.5)

HC 0 15 (75) 16 (67)

EEG data per patient,
mean (SD), h

TLE 164.6 (102.9) 120.6 (40.1) 63.3 (57.3)

HC 0 76.9 (58.7) 31.1 (41.6)

Seizure onset location
(L/R/B/I), patient No. (%)

TLE 15 (29)/8 (16)/20 (39)/8
(16)

14 (58)/6 (25)/4 (17)/0 12 (55)/6 (27)/4 (18)/0

HC NA NA NA

Abbreviations: B, bitemporal;
BWH, Brigham andWomen’s
Hospital; EEG, electroencepha-
logram; FO, foramen ovale;
HC, healthy control; I, indeterminate;
L, left temporal; MGH, Massachusetts
General Hospital; R, right temporal;
NA, not applicable; TLE, temporal
lobe epilepsy.
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ment [NREM] sleep)was significantly higher for patientswith
TLE than for HCs (268 [300] vs 15 [39], respectively; Mann-
WhitneyU = 62; P < .001) (Figure 4A). To assess whether the

HEAnet detection rate could be used to distinguish patients
with TLE fromHCs, we plotted an ROC curve, where patients
were classified ashavingTLE if theirHEAnetdetection rate on

Figure 3. HEAnet Performance at the Single-Event Level
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the left or right exceeded a certain threshold, which we var-
ied to generate the plot. HEAnet distinguished patients with
TLE from HCs with an AUC ROC of 0.88 (Figure 4B).

We next evaluated HEAnet’s ability to predict the lateral-
ity of TLE.We calculated the asymmetry index ofHEAnet de-
tections (asymmetry HEA) for all patients with TLE (eTable 2
in the Supplement). A total of 86% of patients with left TLE
hadanegativeasymmetryHEA, and83%ofpatientswith right
TLE had a positive asymmetry HEA (Figure 4C). Defining a
threshold of |asymmetry HEA| greater than 0.75, for HEAnet
topredict epilepsy laterality (ie, asymmetryHEA<−0.75 = left
TLE and >0.75 = right TLE), HEAnet predicted epilepsy later-
ality in 58% of patients with TLE, with an accuracy of 100%.

Use of HEAnet on 1-Hour Sleep Recordings

to Improve Epilepsy Diagnosis

WeassessedthediagnosticcapabilityofHEAneton1-hoursleep
recordings, which can be reasonably attained in an outpa-

tient setting.Using the first contiguoushour of recordingwith
greater than90%sleep for eachpatient indata set 2,weevalu-
ated how well HEAnet distinguished patients with TLE from
HCs, based on HEAnet detection rate. HEAnet distinguished
patientswithTLE fromHCswith anAUCROCof0.823.Wede-
fineda threshold fordiagnosisofTLE,asHEAnetdetection rate
more than 33 HEAnet detections per hour of NREM sleep on
either the left or right side, which maximized the diagnostic
specificity.Applying this threshold to the 1-hour recordings re-
sulted in a diagnostic specificity of 1 and a sensitivity of 0.58.
To directly compare this with human performance, 2 experts
(A.D.L., C.S.J.) independently annotated the same 1-hour re-
cordings, blinded to diagnosis, and determined whether the
EEGwas diagnostic of TLE (eTable 2 in the Supplement). One
expert diagnosed TLEwith a specificity of 1 and sensitivity of
0.5,whereas theother expert hada specificity of0.75 and sen-
sitivityof0.58.A totalof 13%ofpatientswithTLE(3of24)were
successfully diagnosed by HEAnet but missed by at least 1

Figure 4. HEAnet on Data Set 2
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expert. HEAnet correctly classified 2 patients with TLE that
bothexpertsmissed,and1patientwithTLEthat 1expertmissed
(eTable 2 in the Supplement). Combining human expert re-
viewwithHEAnet increased thediagnostic sensitivity forTLE
from0.50 to0.58, for individual experts, to0.63 to0.67,with-
out reducing diagnostic specificity.

Monitoring Changes in HEA in Response

toMedication Adjustments

Wenext evaluatedHEAnet’s ability tomonitor changes inHEA
in response to changes in antiseizuremedications (ASMs). Pa-
tients with epilepsy admitted to the EMU are typically ta-
pered off ASMs at the beginning of the hospitalization, to
increase likelihood of capturing seizures. Later, in prepara-
tion for discharge home, ASMs are restarted. We compared
HEAnetdetection rates foreachpatient, ondays that theywere
receiving the highest and lowest amounts of ASM (HEA high
andHEA low, respectively) (Figure 4D). In 89%of patients (16
of 18) with TLE, the HEAnet detection rate increasedwith re-
duction of ASMs.HEA lowwas significantly greater thanHEA
high (mean [SD], 334 [368] vs 157 [182] detections per hour,
respectively; P = .005). Figure 4E illustrates changes in HEA
detection rate for 4 representative patients. The HEA detec-
tion rate increased as ASMswere tapered and decreasedwith
reintroduction of ASMs.

Validation of HEAnet on an Independent Data Set

From an External Institution

As a final validation of HEAnet’s performance generalizabil-
ity,weappliedHEAnet (operatingatPPV0.9) to adata set from
anoutside institution (data set 3,BWH) (eTable3 in theSupple-
ment). HEAnet’s performance metrics on data set 3 were
comparable with those in data set 2, distinguishing patients
with TLE fromHCswith an AUCROC of 0.95 (eFigure 6 in the
Supplement). Applying the threshold previously defined in
data set 2 fordiagnosis ofTLE (HEAnetdetection rateoneither
side >33HEAnet detections per hour ofNREMsleep), HEAnet
correctlydiagnosedTLE in68%ofpatientswithTLE (15of 22),
but incorrectly diagnosed TLE in 4% of HCs (1 of 24), yielding
a PPV for TLEdiagnosis of 93.7%.Applying the threshold pre-
viously defined in data set 2 for prediction of TLE laterality
(|asymmetryHEA| >0.75), HEAnet predicted laterality in 59%
ofpatients (13of22)withTLE,withanaccuracyof92%.Among
patientswithunilateral TLE,whowere correctlydiagnosedby
HEAnetashavingTLE (n = 12),HEAnetprovided lateralitypre-
dictions for 75% (n = 9), with 100% accuracy (eResults in the
Supplement).

Discussion

Results of this diagnostic study suggest that HEAnet is an al-
gorithm that noninvasively detects HEA using only informa-
tion from a standard scalp EEG. Although the goal of most
spike-detectionalgorithms is to automate thedetectionof epi-
leptiform activity that is easily identified by human experts,
HEAnet is unique in that it detects hippocampal epileptiform
activity that cannot be identified by human experts.

One prior study attempted to develop an HEA detection
algorithm on scalp EEG, using a small data set of 20-minute
combined scalp EEG and FO recordings from 18 patients with
TLE (total data set length, approximately 6 hours), with ap-
proximately 6100 HEA examples.22 Using logistic regression
with hand-crafted features, their optimized model achieved
an AUC ROC of 0.67 at the single-event level.22 Here, we de-
velopedHEAnet using amuch larger data set (51 patientswith
TLE with 972095 HEA examples) and applied deep learning
algorithms to achieve an AUC ROC of 0.89 and an AUC PR of
0.39 at the single-event level. HEAnet’s performance gener-
alized well on 2 external data sets, where its output accu-
rately distinguished patients with TLE from HCs, provided
lateralizing information, andmonitored changes inHEA in re-
sponse to changes in ASMs. HEAnet has several applications
that could fill important gaps in the diagnosis and treatment
of TLE. First,HEAnet can improve the sensitivity of scalpEEG
for diagnosing TLE, particularly when clinical interpretation
is normal or questionably abnormal. In data set 2, 13% of pa-
tients with TLE (3 of 24) were successfully diagnosed by
HEAnet but missed by at least 1 expert on scalp EEG review.
Combining expert review with HEAnet increased the sensi-
tivity of diagnosing TLE from 0.50 to 0.58 for human ex-
perts, to 0.63 to 0.67, without reducing specificity. Second, a
common disabling feature of TLE is cognitive impairment.23

The ability to noninvasively monitor HEA would allow clini-
cians to assesswhether cognitive impairment in apatientwith
TLE is related toHEAand toassesswhether reducingHEAwith
medications improves their cognitive function. Third, in pa-
tients with TLE undergoing evaluation for epilepsy surgery,
HEAnet could serve as a complementary, noninvasive bio-
marker, independent of scalpEEGepileptiformdischarges, to
guide surgical decision-making.

Limitations

Our study had several limitations. First, HEAnet was specifi-
cally trained to detect HEA occurring during sleep. Never-
theless, HEAnet performed reasonably well on awake EEG
data, maintaining excellent specificity, though with reduced
sensitivity. We also found that 1-hour of sleep EEG, achiev-
able in the outpatient setting, was sufficient for HEAnet to
improve the diagnostic sensitivity of scalp EEG beyond that
of human expert performance. Second, our study used FO
recordings as the ground truth for HEA. As such, HEAnet
might detect epileptiform activity arising not only from the
hippocampus but also from other temporal lobe and extra-
temporal regions (eg, amygdala, parahippocampal gyrus,
orbitofrontal lobe, insula). Future studies will better define
the spatial specificity of HEAnet. Third, HEAnet used a
simple CNN architecture with raw scalp EEG as input.
Addition of hand-crafted features (eg, time-frequency,22

connectivity,10 zero-crossing patterns24), and more complex
architectures21,25 will be explored in future work. Fourth,
although we validated HEAnet’s performance and prediction
thresholds using 2 external data sets, both data sets were
relatively small and lacked ground truth information on HEA.
Validation on larger data sets that include intracranial elec-
trodes and that span a wider range of ages and diseases will
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better define appropriate-use cases for HEAnet. Finally, a
unique concern in applying HEAnet to clinical data is that
visual confirmation of HEAnet’s detections (scalp-negative
spikes) is not possible; as such, operating HEAnet at thresh-
olds that minimize false-positive detections and setting
thresholds for clinical decision-making that are significantly
higher than HEAnet’s false positive detection rate will be
essential for minimizing unnecessary diagnostic tests and
treatments that could result from application of HEAnet.

Conclusions

Results of this diagnostic study suggest that HEAnet pro-
vides a novel and noninvasive biomarker of hippocampal
hyperexcitabilityon scalpEEG.Althoughmostmachine learn-
ing applications in medicine aim to match human expert-
level performance for a chosen problem, HEAnet performs a
task that human experts cannot.
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eMETHODS. 
 

 

EEG acquisition 

 

 EEG recordings were acquired using XLTEK hardware (Natus Medical Inc., Pleasanton CA) with data sampled at 1024 Hz.  

Scalp electrodes were placed using the International 10�20 system with anterior temporal electrodes (T1, T2).  Four-contact FO 

electrodes (Ad-Tech, Racine, WI) were placed bilaterally, as described previously1,2.   

 

Scalp EEG pre-processing 

 

Scalp EEG recordings were down-sampled to 256 Hz, bandpass filtered from 0.5 to 70 Hz with a Butterworth third order 

filter, and notch filtered at 60 Hz with a Butterworth fourth-order filter. A longitudinal bipolar montage with a coronal ring was used, 

resulting in 25 scalp EEG bipolar channels.  Each bipolar channel was normalized to zero-median, unit interquartile range.  

 We applied automated artifact rejection to remove noisy segments from all recordings. For FO recordings, artifact rejection 

was performed as previously described3.  For scalp EEG recordings, artifacts were identified as follows: Scalp EEG recordings were 

divided into 1-second non-overlapping epochs.  For each epoch, the maximum amplitude across all channels (ampmax) was calculated. 

For each patient, all epochs with ampmax greater than 3 standard deviations above the mean ampmax for that patient were considered 

artifactual and removed from further analysis.   

 

Automated sleep staging 

 

Automated sleep staging was performed on all scalp EEG recordings, using a publicly available deep learning algorithm that 

we previously developed for use on long-term scalp EEG recordings, and that performs at the level of human sleep experts 

(https://github.com/mauriceaj/CRNNeeg-sleep)4.  We extracted all sleep epochs (N1, N2, N3, and REM) from each recording for 

analysis and discarded awake portions of the recordings. 

 

Automated generation of a training dataset of HEA examples on scalp EEG 

 

FO electrodes record HEA with high fidelity and thus provide the ground truth for labeling HEA in Dataset #1.  To 

automatically generate a massive dataset of HEA examples, we used a deep learning algorithm (referred to here as FOnet) that 

accurately detects HEA from the FO recordings3.  FOnet was independently applied to the left and right FO recordings from Dataset 

#1, to automatically label positive and negative HEA examples from the left and right hippocampi, respectively.  All 250ms epochs in 

which the output of FOnet exceeded a threshold, thFO, were labeled as positive HEA training examples. We tested three thFO values 

(0.870, 0.923, and 0.966), which corresponded to a positive predictive value (PPV) of HEA detection of 0.7, 0.8, and 0.9, respectively.  

Epochs in which FOnet�s output was less than 0.5 were labelled as negative HEA epochs. We extracted ~ 2.12 million, 1.58 million, 

and 0.97 million positive HEA training examples for PPVs of 0.7, 0.8, and 0.9, respectively. We extracted 18.9 million negative HEA 

examples.  We used the temporal information from the positive and negative HEA examples to extract the corresponding scalp EEG 

data for training. 

 As epileptiform discharges are relatively infrequent events, the number of negative HEA examples greatly exceeded the 

number of positive HEA examples. To create a balanced training dataset, we chose the number of negative HEA examples to match 

the number of positive HEA examples.  Negative HEA examples for the training dataset were randomly sampled from all negative 

HEA epochs and stratified uniformly across all training patients and across left and right sides. To ensure that negative HEA examples 

were truly negative, we excluded negative HEA examples from FO recordings in which HEA comprised >20% of all epochs on a 

given hemisphere, or in which HEA on both hemispheres additively comprised > 30% of all epochs.   

 

Training HEAnet to detect the laterality of HEA 

 

We chose to develop a single HEA detection algorithm that is agnostic to laterality and that can be applied to independently 

detect HEA from either the left or right hippocampus. This approach, which we employed previously5,6, assumes that the scalp EEG 

signatures for left and right HEA are similar, but simple mirror images of one another.  We designated the left side as the default and 

kept the scalp EEG data corresponding to all left-sided HEA training examples intact.  For all right-sided HEA training examples, we 

performed a right-left reflection of the scalp EEG data.  For example, we swapped the labels for Fp2-F8 (right side) and Fp1-F7 (its 

left-sided correlate) and performed similar right-left label swaps for all channels on the scalp EEG, so that all right-sided HEA 

examples now appeared as left-sided HEA.  As such, all scalp EEG examples of HEA in the training dataset appear to arise from the 

left.  The HEA detection algorithm is thus trained to detect left-sided HEA as a default but can also be used to detect right-sided HEA.  

To detect left and right-sided HEA, HEAnet processes each scalp EEG input segment twice, first using the original scalp EEG data (to 

detect left-sided HEA), and then using right-left reflected scalp EEG data (to detect right-sided HEA)  
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Expert annotation of testing dataset for HEAnet  

 

5 hours of asleep EEG recording from each patient in Dataset #1 were held out for testing algorithm performance. 1 hour of 

the held-out data from each patient was independently annotated by two board-certified epileptologists (ADL, CSJ), using a custom-

made graphical user interface, which allowed the experts to view the FO and scalp EEG data, switch between different montages 

(longitudinal bipolar, referential, and average), and adjust gain and filter settings as they would for clinical EEG interpretation.  Expert 

annotation was performed in two stages.  In the first stage, the epileptologists reviewed only scalp EEG data (blinded to FO 

recordings) and marked all epileptiform discharges visible on scalp EEG.  In the second stage, the experts viewed the combined FO 

and scalp EEG recordings and annotated all HEA visible on the FO recordings.    

Testing examples were generated for each patient by dividing the 1-hour, expert-annotated recording into non-overlapping 

250ms epochs.  Epochs were labeled as positive, equivocal, or negative HEA examples if HEA was annotated within the epoch by 

both, either, or none of the experts, respectively.  All epochs in which either expert annotated a visible scalp EEG epileptiform 

discharge were discarded from the testing dataset, to ensure that HEAnet did not simply learn to detect visible epileptiform discharges 

on scalp EEG, and to provide a rigorous evaluation of HEAnet�s performance in detecting HEA that cannot already be easily detected 

by experts.   

 Altogether, the experts labeled a total of 22,762 positive HEA examples and 26,770 equivocal HEA examples. Cohen�s 

kappa for inter-rater agreement between experts was 0.62, indicating moderate agreement.  Each patient had, on average, 455 ± 448 

positive HEA examples and 535 ± 516 equivocal HEA examples. 12% of positive HEA examples, and 10% of equivocal HEA 

examples coincided with an annotation of a visible epileptiform discharge on scalp EEG and were removed from the testing dataset.  

29.4% of annotations of visible epileptiform discharges on scalp EEG did not coincide with a positive or equivocal HEA example on 

FO electrodes. We examined the performance of FOnet on the 1-hour held-out recordings, using the expert annotations as ground 

truth, and found that FOnet had a sensitivity of 0.75 and PPV of 0.996. 

 The two experts also annotated 1 hour of asleep scalp EEG recording for each patient from Dataset #2, using the same 

interface as above, and blinded to diagnosis.  They annotated all epileptiform discharges visible on the scalp EEG, and at the end of 

each recording, they determined whether the EEG was diagnostic for TLE or not.   

 

CNN training and cross-validation (detailed) 

 

We initially trained individual CNN models to detect HEA, based on a scalp EEG input.  The input to each CNN is a 25 x 

128 matrix that represents a 500ms segment (128 samples) of pre-processed scalp EEG data from 25 bipolar channels, ordered as: T3-

C3, C3-Cz, F3-C3, C3-P3, P3-O1, Fp1-F7, F7-T3, T3-T5, T5-O1, T1-T3, Fp1-F3, T1-T2, Fz-Cz, Cz-Pz, T4-C4, C4-Cz, F4-C4, C4-

P4, P4-O2, Fp2-F8, F8-T4, T4-T6, T6-O2, T2-T4, Fp2-F4. The output of each CNN is the probability that HEA occurred in the 

central 250ms of the scalp EEG input. 

We used 5-fold cross validation, in which patients were divided into 5 groups of 10 patients each, and data from each patient 

was used for either training or testing, depending on the fold.  Patients were stratified into groups such that the number of definite and 

equivocal HEA testing examples (from the 1-hour expert-labelled recordings) was similar across groups.   

For each fold, one group of patients was designated the testing set, one group was designated the early-stopping set (ES), and 

the remaining three groups were pooled to form the optimization set (Opt). Each group was used at most once for the testing set, and 

at most once for the ES set. One patient�s data was used only in the Opt set, as the 1-hour expert annotated recording for this patient 

did not contain any definite HEA examples.  Data from the Opt set was comprised of automatically extracted HEA training examples, 

pooled across all patients in the Opt set.  Data from the ES and testing sets was comprised of HEA testing examples from the 1-hour 

expert-labelled recordings, pooled across all patients in the ES or testing sets, respectively.  

 CNNs were trained using the Adaptive Moment Estimation (Adam) optimization algorithm with a batch-size of bs, and 

parameters b1, b2 and e set to 0.9, 0.999, and 10-8, respectively. We used the log (cross-entropy) loss function.  A training cycle was 

defined as a complete iteration over all training examples in the Opt set.  Negative HEA examples for training were randomly re-

sampled after every CR training cycles. Positive HEA examples were shifted by a randomly chosen time jitter of s [125 ,125-] א ms 

every J training cycles.  

 After each training cycle, we calculated the performance of the CNN model on the ES set, based on the area under the 

precision-recall curve (AUCPR).  We used a counter (EScount) which was incremented each time the AUCPR for the ES set did not 

improve for 5 consecutive training cycles. Each time EScount reached a new multiple of 5, the learning rate was reduced by 50%. 

Training was stopped when EScount reached 25.  The optimal model weights were taken from the training cycle with the highest 

corresponding AUCPR on the ES set.  

 We also trained CNNs without early stopping. For each fold, 1 group of patients was designated the testing set, and the 

remaining four groups were pooled to form the Opt set.  Each model was trained for a fixed number of training cycles.  Every CL 

training cycles, the learning rate was reduced by LRed. The optimal model weights were taken from the final training cycle.   

 After training was complete, the performance of the optimal model was evaluated on the testing set.  After repeating the 

training procedure for all folds, the performance metrics computed on each testing set were averaged across folds, to yield a final 

estimation of model performance. We repeated the cross-validation procedure to test multiple CNN models, each with different 

combinations of hyperparameters. The hyperparameters and range of values evaluated are shown in eTable 5.  
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CNN architecture  

 

The Keras library running on top of Tensorflow was used to configure the CNN models, which were trained on two CUDA-

enabled NVIDIA GPUs, running on CentOS 7. The architecture of each CNN is shown in Figure 2B.  For each CNN, the scalp EEG 

input is passed through a sequence of Nconv convolutional layers, each consisting of NB convolutional blocks. Each convolutional 

block of convolutional layer i contains fi filters fi  = i x f0, where f0 is a hyperparameter corresponding to the number of filters in the 

first convolutional layer. We tested both 1D and 2D convolutions. For 1D convolutions, each filter slides across the temporal 

dimension only and is of size Ci x Ki,1D, where Ci is the channel dimension and Ki,1D is a hyperparameter. For 2D convolutions, each 

filter slides across time and channels, and is of size K i,2D x K i,2D, where K i,2D is a hyperparameter. After hyperparameter optimization, 

Ki,1D and Ki,2D were set as in eTable 4 for all CNNs in HEAnet.  Following the NB blocks is a max-pooling layer of size mi and stride = 

1, and a dropout regularization step7. Following all Nconv convolutional layers is a fully connected layer of size 1024, followed by a 

logistic regression unit for final classification. We use the rectified linear unit (relu) function7 as the activation function for the 

convolutional and fully connected layers, and the sigmoid function as the activation function for the final output.  

 

Performance metrics 

 

To test each individual CNN model, we applied it to the scalp EEG data from the appropriate testing set and recorded all 

detections made by the model.  Positive HEA examples were classified as True Positive (TP) detections if a detection was made 

within 250ms of the example, with the correct laterality.  False Positive (FP) detections were defined as any detection that did not 

occur within 250ms of a positive or equivocal HEA example on the same side. True Negative (TN) detections were defined as 

equivocal or negative HEA examples on which no detections were made on the same side. Sensitivity was defined as the number of 

TP detections divided by the number of positive HEA examples. Precision, also known as positive predictive value (PPV), was 

defined as the number of TP detections divided by the sum of TP and FP detections. We defined specificity as the number of TN 

detections divided by the sum of negative HEA examples and equivocal HEA examples without detections.   

 

HEAnet architecture 

 

 HEAnet is an ensemble of 6 CNNs, comprised of the top 3 performing 1D-CNNs and the top 3 performing 2D-CNNs based 

on AUCPR.  The parameters and individual performance of each CNN is shown in eTable 2.  The output of HEAnet is the averaged 

output from all 6 CNNs.  We found that an ensemble of 6 CNNs provided a balance between increasing the stability of the algorithm�s 

output and setting a practical limitation on the computational requirements needed to apply the algorithm to longer recordings.  The 

final HEAnet model was trained using the training dataset from all patients in Dataset #1.   

 

Applying SpikeNet for detection of visible epileptiform discharges on scalp EEG  

 

We used the previously published deep learning algorithm, SpikeNet8, to automatically detect visible epileptiform discharges 

on scalp EEG.  The purpose was to exclude these epochs from datasets used to test the performance of HEAnet, to ensure that HEAnet 

was not simply detecting epileptiform discharges that were easily visible on the scalp EEG, and to provide a rigorous demonstration of 

HEAnet�s ability to detect HEA that is not readily detected by humans or spike detection algorithms.  Specifically, we used SpikeNet 

to (a) automatically label 4 hours of testing data (scalp EEG) that had not undergone expert annotation, for each patient in Dataset #1; 

and (b) automatically label scalp EEG recordings from each patient in Dataset #2. 

 SpikeNet takes as an input a 1-second segment of scalp EEG. The raw EEG is passed through a high-pass filter with 0.5Hz 

cutoff and a notch filter at 60Hz. The data is downsampled to 128Hz. The input data is formatted as a concatenation of longitudinal 

bipolar channels (18) and common average reference (19), for a total of 37 channels. SpikeNet is applied on moving 1s windows with 

step size = 8 samples (62.5ms), and a detection is made when the output of SpikeNet is > 0.42 (threshold that minimized the 

calibration error in the training set of SpikeNet). Consecutive detections less than 8 samples apart are clustered together into a single 

event. Finally, events that have a duration smaller than 8 samples are discarded. We compared SpikeNet detections with expert 

annotations of the 1-hour held-out recordings from Dataset #1 and found that at a threshold of 0.42, SpikeNet had a PPV of 0.54 and a 

sensitivity of 0.48.    All 250ms epochs containing spike detections by SpikeNet were removed from further analysis.   

 

Assessing scalp EEG signatures of HEA, as detected by HEAnet 

 

 We set the detection threshold of HEAnet such that PPV ~ 0.8 and sensitivity was ~ 20% and applied it to the testing data 

from Dataset #1.  For each true positive epoch, a 250ms window centered on the HEA peak on FO electrodes (time at peak absolute 

amplitude on the FO channels) was extracted for both the FO electrodes and scalp EEG.  These windows were averaged across all true 

positive epochs for each patient (intra-patient). The intra-patient averaged waveforms were then averaged across all patients (inter-

patient). Patients with < 5 true positive epochs were excluded from this analysis. The same procedure was repeated for false negative 

epochs.  To calculate the latency between the peak of the deflection on the scalp EEG and the peak of the HEA on the FO channels, 

we determined the time-point at maximum absolute amplitude on the scalp EEG, for each intra-patient averaged waveform. The 

latency was calculated as that point minus 125ms (the middle of the 250ms window, corresponding to the peak of HEA on the FO 

channels). 
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Calculation of Asymmetry Index 

 

Asymmetry index was defined as (R-L) / (R+L), where R and L represent the number of right- and left-sided HEA detections, 

respectively.  A positive asymmetry index indicates more right-sided detections, whereas a negative asymmetry index indicates more 

left-sided detections.   

 

Applying HEAnet to Datasets #2 and #3 

 

Scalp EEGs for Datasets #2 and #3 underwent the same scalp EEG pre-processing steps as described above.  We applied the 

automated sleep staging algorithm to extract all sleep epochs for testing.  We applied SpikeNet to automatically remove epochs with 

visible epileptiform discharges on scalp EEG from Dataset #2.   

 Dataset #3 came from an external institution, where a board-certified epileptologist selected TLE and HC patients for the 

dataset, based on our inclusion/exclusion criteria. As a stringent test of HEAnet�s application, we remained blinded to the diagnoses of 

the patients in this dataset (including how many patients were in each diagnostic group) while performing the initial analysis, i.e., 

applying HEAnet to predict diagnosis (TLE vs HC) and TLE laterality.  To more closely approximate real-world application, we did 

not use SpikeNet to remove scalp visible epileptiform discharges for this analysis.   
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eRESULTS. 
 

 

Scalp EEG signature of HEA learned by HEAnet 

 

To visualize the scalp EEG signature of HEA learned by HEAnet, we calculated the averaged scalp EEG signal across all true 

positive detections for each patient, synchronized on the HEA peak on FO recordings (eFigure 1A).  The averaged scalp EEG 

signature of detected HEA was a low amplitude (19.1 ± 9.4 µV) negative deflection lasting 150-200ms.  For left-sided HEA 

detections, the voltage field of the scalp EEG signature was broadly distributed, involving most left hemispheric channels and 

extending to the midline and right frontal and parasagittal channels; the right temporal channels showed the lowest amplitudes. The 

median latency between the HEA peak on FO electrodes and the peak of the scalp EEG deflection was 0 ms (IQR: [-3.91, 97.66] (n = 

37).  

 We also calculated the averaged scalp EEG and FO electrode signatures across all false negative (missed) detections for each 

patient (eFigure 1B).  The scalp EEG signature of missed HEA showed a lower amplitude deflection (10.5 ± 7.9 µV) than for detected 

HEA (Wilcoxon Signed Rank Statistic = 16.0, p < 0.001).  The absolute HEA peak amplitude on FO electrodes was also lower for 

missed HEA (221 ± 184 µV, n = 6644) compared to detected HEA (241 ± 186µV, n = 3515) (Mann-Whitney U > 1.0 x 107, p < 

0.001). Similarly, the maximal slope for HEA on FO electrodes was significantly lower for missed HEA (189 ± 263 µV/ms, n = 6644) 

compared to detected HEA (244 ± 229 µV/ms, n = 3515) (Mann-Whitney U > 9.7 x 106, p < 0.001).  

Overall, we suspect that HEAnet detects most HEA through a volume-conducted signal, based on our findings above 

showing: 1) a median latency of 0ms between the HEA peak on FO electrodes and the peak of the averaged scalp EEG signature of 

detected HEA; 2) positive correlations between ݕොHEA and HEA amplitude and slope on FO electrodes (eFigure 2). It is possible that 

HEAnet may also detect some HEA propagated from the hippocampus to neocortex, as the IQR for the median latency above [-3.91, 

97.66] was skewed in the positive direction.    

 

Analysis of false positive detections by HEAnet 

 

We visually analyzed a random subset of false positive (FP) detections made by HEAnet on the testing dataset for Dataset #1.  

For each patient, we randomly selected up to 10 FP detections for review; if a patient had fewer than 10 FP detections, we reviewed all 

FP detections from that patient. Overall, we reviewed a median of 6 FP detections per patient (IQR: [0, 10]), which comprised a total 

of 302 FP detections reviewed (~ 27% of all FP detections in the testing dataset, with HEAnet operating at a PPV of ~0.8).  

Images of FP detections were presented in random order to a board-certified epileptologist, to identify whether specific 

background abnormalities, artifacts, or other features could be consistently identified as the �cause� for the FP detections.  Each image 

contained 15 seconds of EEG recording, with the FP epoch centered and an indication of the side (left / right) that the FP was detected 

on (eFigure 3).  Both the scalp EEG data (a full anterior-posterior longitudinal bipolar montage) and the foramen ovale electrode data 

were shown.  The results of this analysis are shown in eTable 7, with representative examples in eFigure 3.  Notably, we found that 

43% of FP detections were actually true positive detections of HEA that had been missed on initial expert annotation. 28% of FPs had 

no obvious change from background, though in many cases, there were associated sleep spindles, or high-frequency low-amplitude 

backgrounds.  10% of FPs were associated with artifact on scalp EEG, most commonly low-amplitude �spiky� artifacts such as EKG, 

electrode pop artifact, or myogenic artifact; importantly, these types of artifact can be readily identified and corrected for.     

 

HEAnet performance across awake and asleep states (from Dataset #1) 

 

For each patient in Dataset #1, we selected 1-hour of clean awake recording (>99% awake, with < 5% of epochs flagged as 

artifact on the FO electrodes).  We applied FOnet (operating at a threshold where PPV was 0.9, and sensitivity was 0.5) to the FO 

electrodes, to obtain a ground truth on when HEA occurred during these recordings. We then applied HEAnet (operating at a threshold 

where the PPV was 0.9 for sleep EEG recordings) to the scalp EEG of these awake recordings.  We report cross-validated 

performance metrics in the awake state (eTable 8).  At the single-event level, HEAnet applied to awake recordings had an AUCROC of 

0.85 ± 0.02 and an AUCPR of 0.19 ± 0.07 (for chance performance, we would expect an AUCPR = 0.008, the frequency of HEA in the 

awake state). Using the same detection threshold for HEAnet that yielded a PPV of 0.9 during sleep, application of HEAnet during the 

awake state had a PPV of 0.81 ± 0.10, a specificity of 0.999 ± 0.00, and a sensitivity of 0.06 ± 0.02.  Ultimately, this means that, while 

application of HEAnet to awake EEG will have a lower sensitivity for detecting HEA at the single event level compared to during 

sleep, we can at least expect that the number of false positive detections during the awake state will also remain low.  

We also examined the performance of HEAnet in each different sleep stage (N1, N2, N3, and REM) in the testing dataset 

(eTable 7).  There were no significant differences in HEAnet�s performance across different sleep stages for AUCROC (one-way 

ANOVA, F=1.23, p=0.33) or AUCPR (one-way ANOVA, F=0.89, p=0.47). 

 

Tracking dynamics of HEA rate over time on Dataset #1 

 

We evaluated whether, for a given individual in Dataset #1, HEAnet�s output could be used to monitor changes in HEA rate 

over time.  We divided each patient�s 5-hour held-out recording into non-overlapping 30-minute epochs and calculated the number of 

HEAnet detections on scalp EEG for each 30-minute epoch.  To estimate the ground truth HEA rate for each 30-minute epoch, we 
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calculated the number of FOnet detections on FO electrodes, that were not associated with a visible epileptiform discharge on scalp 

EEG.  eFigure 4 shows the relationship between HEA rates predicted by HEAnet from scalp EEG, and the ground truth HEA rates 

based on FOnet detections from FO electrodes, for 4 representative patients.  We calculated the correlation between HEAnet�s 

predicted HEA rate, and the ground truth HEA rate, across all 30-minute epochs in the 5-hour recording for each patient.  Averaging 

across all patients yielded a mean correlation coefficient of 0.62 ± 0.33 (Wilcoxon Signed test Statistic = 14.0, p < 0.001). 50% of 

patients had a correlation coefficient > 0.7.  HEAnet�s output thus has a sufficient dynamic range to track changes in HEA rate over 

time, for individual patients.  

 

 

Laterality of HEAnet detections correlate with laterality of TLE on Dataset #1 

 

Using the 1-hour, expert-annotated recordings, we calculated an asymmetry index for each patient, defined as (R-L) / (R+L), 

where R and L represent the number of right- and left-sided HEA detections, respectively.  A positive asymmetry index indicates more 

right-sided detections, whereas a negative asymmetry index indicates more left-sided detections.  We calculated an asymmetry index 

using HEAnet detections on scalp EEG (ASymHEA), as well as an asymmetry index using expert annotations on FO electrodes 

(ASymEXP). We found a moderate correlation between ASymHEA and ASymEXP (R = 0.67, p < 0.001, eFigure 5A). We next divided 

patients from Dataset #1 into 3 groups, based on whether they were clinically diagnosed as having left TLE, right TLE, or bi-temporal 

epilepsy. eFigure 5B shows the median ASymHEA for each group.   There was a significant trend towards increasing median ASymHEA, 

going from left TLE to bi-temporal TLE to right TLE (p = 0.011).  73% of patients with left TLE had a negative ASymHEA, and 63% 

of patients with right TLE had a positive ASymHEA.   

 

 

Performance of HEAnet on Dataset #3 

 

We applied HEAnet (operating at PPV 0.9) to Dataset #3 (from an external institution, BWH), and calculated the HEA 

detection rate (number of HEAnet detections per hour NREM sleep) for each patient (eTable 3). The HEA detection rate was 

significantly higher for TLE than controls (99 ± 109 vs. 13 ± 45, respectively; Mann-Whitney U = 30, p < 0.001; eFigure 6A). The 

HEAnet detection rate distinguished TLE from controls with an AUCROC of 0.95 (eFigure 6B).  We then calculated the asymmetry 

index of HEAnet detections (ASymHEA) for all TLE patients (eTable 3).  100% of left TLE patients had a negative ASymHEA, and 83% 

of right TLE patients had a positive ASymHEA (eFigure 6C, eTable 3).  Among TLE patients, ASymHEA < -0.75 had a PPV of 0.91 for 

predicting left TLE, while an ASymHEA > +0.75 had a PPV of 1 for predicting right TLE.  Thus, in TLE patients where the magnitude 

of ASymHEA is high (59% of TLE patients in Dataset #3 had an |ASymHEA| > 0.75), HEAnet accurately lateralized the seizure onset 

zone.   

 Further analysis of HEAnet�s performance in specific patients in Dataset #3 yielded additional insights.  As described in the 

main manuscript, we predicted a diagnosis of TLE based on a threshold that we defined based on Dataset #2 (HEAnet detection rate > 

33 per hour NREM sleep, on either the left or right side).  On Dataset #3, HEAnet missed a diagnosis on a L TLE patient who had an 

HEAnet detection rate of 32.5 per hour NREM sleep on the left side, with an ASymHEA = -0.97.  Similarly, HEAnet missed a 

diagnosis on a B TLE patient, who had HEAnet detection rates of 29.4 and 25.8 on the left and right sides, respectively, and an 

ASymHEA = -0.06.  Thus, while the threshold of 33 detections per hour works reasonably well, further fine-tuning of this threshold 

may optimize performance.  For example, reducing this threshold to 29 detections per hour would have increased sensitivity of 

diagnosing TLE from 68% to 77%, without changing the specificity of detection.   

 HEAnet incorrectly diagnosed 1 HC patient as having TLE, with an HEAnet detection rate of 206.3 per hour on the right 

side, significantly higher than the detection rates in all other HC.  Visual inspection of these detections revealed that the vast majority 

of these detections occurred synchronously with very low amplitude EKG artifact on the scalp EEG.  Removing this patient from the 

analyses above, we found that the HEA detection rate in controls fell to 4 ± 8 per hour (compared to 13 ± 45, with this patient 

included).  
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eFigure 1.  Scalp EEG Signatures of HEA Detected by HEAnet  
 
 

 

 

 

eFigure 1.  Scalp EEG signatures of HEA detected by HEAnet.  (A) Averaged scalp EEG and FO signals from all correctly 

detected HEA epochs, from five representative patients (left), and on the far right, from the population-average across all patients 

(n=37; we excluded 12 patients with < 5 true positive detections and 2 patients with noisy FO recordings, from the average).   Epochs 

were aligned by the peak of the intracranial spike. Examples were generated with HEAnet operating at a PPV of ~0.8.  (B) Similar to 

A, but for all missed HEA epochs (based on a HEAnet detection threshold < 0.5). For (A) and (B), a C2 reference electrode was used, 

and all HEA occurring on the right side were left-right reflected.  
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eFigure 2.  Relationship Between ǓHEA and Corresponding HEA Amplitude and Slope on FO 
Electrodes  
 

 

 

 
eFigure 2.  Relationship between ࢟ෝHEA and corresponding HEA amplitude and slope on FO electrodes.  For each positive HEA 

example in the testing dataset, we calculated the maximum amplitude and slope on FO electrodes.  We then standardized HEA 

amplitudes and slopes to z-scores within each patient, to capture variability in these measures within a given patient, while also 

allowing comparison across patients, since the exact positioning of FO electrodes placement and recorded HEA characteristics can 

differ substantially between patients. Positive HEA examples from all patients (excluding 2 who had noisy FO electrode recordings) 

were binned by ݕොHEA, and the corresponding z-scores for amplitude or slope were averaged across all examples in each bin.  Bars 

represent means with 95% confidence interval based on bootstrapping. 
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eFigure 3.  Examples of False-Positive Detections by HEAnet 
   
Each panel shows 15 seconds of EEG. The false positive detection epoch is highlighted in green, with the laterality of the detection 

being on the same side as the red trace shown in either LFO1-2 or RFO1-2. Vertical bars represent 1 second.  

A. �False� false positive (true positive) on the RIGHT.  Annotation of HEA on RFO electrode was likely missed by experts due to 

occurrence of HEA on LFO electrode at same time, and minimal deflection on the RFO bipolar montage. 

B. �False� false positive (true positive) detection on the LEFT.  There is probable HEA on the LFO electrode, given similar 

morphology though lower amplitude compared to two other examples of L HEA on the same page.  Annotation was likely missed by 

experts due to the low amplitude, in addition to EKG artifact on FO electrodes. 

C. False positive detection on the LEFT, likely related to a �forme fruste� epileptiform discharge visible on scalp EEG on the left that 

was missed on expert annotation. 

D. False positive on the LEFT, possibly related to sleep spindles in the background. 

E. False positive detection on the LEFT, possibly related to myogenic artifact in the background. 

F. False positive detection on the RIGHT, possibly related to electrode pop artifact in the background. 

G. False positive detection on the LEFT, possibly related to HEA on RFO electrode, with concurrent sleep spindles in the background. 

H. False positive detection on the RIGHT, possibly due to high frequency, low amplitude activity on the right.   

 

 

 

 

 

 

A.  �False� false positive (true positive) on the RIGHT.  Annotation of HEA on RFO electrode was likely missed by experts due to 

occurrence of HEA on LFO electrode at same time, and minimal deflection on the RFO bipolar montage. 
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B. �False� false positive (true positive) detection on the LEFT.  There is probable HEA on the LFO electrode, given similar 

morphology though lower amplitude compared to two other examples of L HEA on the same page.  Annotation was likely missed by 

experts due to the low amplitude, in addition to background EKG artifact on FO electrodes. 

 

 

C.  False positive detection on the LEFT, likely related to a �forme fruste� epileptiform discharge visible on scalp EEG on the left that 

was not marked on expert annotation. 
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D. False positive on the LEFT, possibly related to sleep spindles in the background. 

 

 

 

 

 

E.  False positive detection on the LEFT, possibly related to myogenic artifact in the background. 
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F.  False positive detection on the RIGHT, possibly related to electrode pop artifact in the background. 

 

 

 

 

G. False positive detection on the LEFT, possibly related to HEA on RFO electrode, with concurrent sleep spindles in the 

background. 

 

  



© 2022 American Medical Association. All rights reserved. 
 

 

H.  False positive detection on the RIGHT, possibly due to high frequency, low amplitude activity on the right.   
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eFigure 4.  Tracking Changes in HEA Rate Over Time in Data Set 1   
 

 

 
eFigure 4.  Tracking changes in HEA rate over time.  Data from four representative patients from Dataset #1, showing the computed 

HEA rate per hour, based on HEAnet detections (blue curve), and FOnet detections (black curve), over the 5h held-out recording.  

Detection rate was calculated across consecutive, non-overlapping 30-minute windows. 
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eFigure 5.  Assessing Laterality of HEAnet Detections in Data Set 1   

 
 

 

 
eFigure 5.  Assessing laterality of HEAnet detections in Dataset #1.  (A) Scatter plot showing correlation between asymmetry index 

as calculated based on expert-labeled HEA and based on HEAnet detections.  Each dot represents a different patient.  Shaded regions 

correspond to 95% confidence intervals estimated using 1000 bootstrap resamples. (B) Box-and-whiskers plots showing the 

asymmetry index calculated based on HEAnet detections, for patients with left TLE [L, n=15], bitemporal epilepsy [B, n=19], and 

right TLE [R, n=8].  8 patients from Dataset #1 were classified as having indeterminate lateralization, as they did not have any 

seizures recorded.  The vertical line at AI = 0 represents the point of symmetry.  The threshold for HEAnet was set such that the PPV 

for HEA detection was ~0.7.  
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eFigure 6.  Validation of HEAnet Performance on Data Set 3 
 

 
 
eFigure 6.  Validation of HEAnet Performance on Dataset #3.  (A) HEAnet detection rate (combined left and right sided detections, 

per hour of NREM sleep), for TLE patients and non-epileptic healthy controls (HC).  (B) ROC curve for classification of TLE versus 

HC based on HEAnet detection rate. (C) Asymmetry index calculated based on HEAnet detections, for patients with left TLE [n=12], 

bitemporal epilepsy (Bilat) [n=4], and right TLE [n=7]. 
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ONLINE-ONLY TABLES 

eTable 1. Clinical Details and HEAnet Performance for Data Set 1 
 

 Expert-Annotated 1-hour Recordings (Held-Out Testing Data) 

Age Sex 
Sz 

onset Surgery 
Surgical 

Pathology 

Record 
Length 

(h) 

Expert Annotations 
# HEAnet Detections 

without scalp visible spikes 

# Positive 
HEA  

# Scalp 
visible spikes 

# Positive HEA without 
scalp visible spike 

% Positive HEA without 
scalp visible spike 

PPV 0.7 PPV 0.9 

32 M L L ATL 
hippocampal 

sclerosis 
331.7 579 76 507 87.6 511 256 

19 F R R ATL 
dentate hilus 

gliosis 
20.6 848 761 537 63.3 354 155 

19 F BL none n/a 146.4 101 8 100 99.0 97 25 

26 F L L ATL 
hippocampal 

sclerosis 
68.8 938 96 901 96.1 261 101 

53 M L 
declined 
surgery 

n/a 74.6 748 185 666 89.0 310 117 

39 F R R ATL 
hippocampal 

gliosis 
117.3 359 59 325 90.5 171 113 

19 M L L ATL 
hippocampal 

sclerosis 
160.0 800 117 679 84.9 600 429 

16 M R R ATL 
hippocampal 

sclerosis 
137.3 228 29 226 99.1 8 1 

42 F L 
declined 
surgery 

n/a 63.3 656 378 536 81.7 269 130 

57 M R R ATL 
hippocampal 

sclerosis 
190.7 58 26 58 100.0 139 82 

40 F BL 
Palliative 

R ATL 
hippocampal 

sclerosis 
146.8 793 21 788 99.4 245 95 

46 F BL 
Palliative 

R ATL 
hippocampal 

sclerosis 
114.4 536 252 439 81.9 238 74 

33 F L L ATL 
hippocampal 

sclerosis 
134.0 48 2 48 100.0 10 1 

26 M L L ATL 
hippocampal 

sclerosis 
228.2 826 3 826 100.0 6 

 
1 



© 2022 American Medical Association. All rights reserved. 
 

 

 Expert-Annotated 1-hour Recordings (Held-Out Testing Data) 

Age Sex 
Seizure 
onset Surgery 

Surgical 
Pathology 

Record 
Length 

(h) 

Expert Annotations 
# HEAnet Detections 

without scalp visible spikes 

# Positive 
HEA  

# Scalp 
visible spikes 

# Positive HEA without 
scalp visible spike 

% Positive HEA without 
scalp visible spike 

PPV 0.7 PPV 0.9 

33 M L L ATL 
sub-ependymal 

gliosis 
47.4 75 5 74 98.7 43 14 

65 M BL none n/a 111.4 1896 101 1759 92.8 179 53 

26 M BL RNS n/a 329.0 626 217 573 91.5 538 221 

53 M BL none n/a 382.3 15 1 15 100.0 53 24 

50 M BL none n/a 65.6 933 94 846 90.7 204 65 

51 F R none n/a 184.3 33 10 33 100.0 18 10 

37 F BL RNS n/a 306.3 0 ** 0 0 n/a n/a n/a 

67 M N/A* 
declined 
surgery 

n/a 107.7 524 51 489 93.3 278 144 

35 M BL none n/a 62.3 32 6 32 100.0 20 11 

37 F BL RNS n/a 135.8 679 243 554 81.6 128 63 

36 M L 
RNS 

 
n/a 88.6 41 7 38 92.7 10 4 

23 F R R ATL reactive gliosis 95.8 876 102 800 91.3 653 365 

65 M BL none n/a 150.4 695 97 614 88.3 133 47 

20 M BL RNS n/a 138.4 1571 34 1559 99.2 104 28 

59 M BL 
Palliative 

R ATL 
hippocampal 

sclerosis 
184.8 871 433 569 65.3 620 309 

30 M BL 
Palliative 

R ATL 
hippocampal 

sclerosis 
234.9 7 7 6 85.7 1 0 

67 F L none n/a 96.3 186 0 186 100.0 18 7 

42 F BL 
Palliative 

L ATL 
hippocampal 

sclerosis 
97.9 1701 1202 1078 63.4 593 219 

24 F BL none n/a 203.5 547 63 541 98.9 48 7 

53 F L none n/a 124.2 162 0 162 100.0 21 0 
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 Expert-Annotated 1-hour Recordings (Held-Out Testing Data) 

Age Sex 
Seizure 
onset Surgery 

Surgical 
Pathology 

Record 
Length 

(h) 

Expert Annotations 
# HEAnet Detections 

without scalp visible spikes 

# Positive 
HEA  

# Scalp 
visible spikes 

# Positive HEA without 
scalp visible spike 

% Positive HEA without 
scalp visible spike 

PPV 0.7 PPV 0.9 

63 F N/A* none n/a 42.6 131 11 125 95.4 21 12 

53 M L L ATL 
focal cortical 

dysplasia 
118.2 236 31 221 93.6 162 53 

35 M BL 
declined 
surgery 

n/a 281.6 803 48 763 95.0 578 318 

49 F R 
declined 
surgery 

n/a 357.2 111 19 111 100.0 45 25 

24 M N/A* 
declined 
surgery 

n/a 119.0 165 3 163 98.8 69 47 

75 M N/A* none n/a 92.4 46 2 46 100.0 18 6 

48 F L none n/a 139.0 353 195 264 74.8 371 191 

58 M N/A* none n/a 97.3 45 1 45 100.0 47 28 

28 M R R ATL 
hippocampal 

sclerosis 
167.5 410 90 374 91.2 183 78 

12 M L none n/a 74.6 45 12 44 97.8 22 9 

34 M L none n/a 345.3 390 3 389 99.7 24 1 

50 M N/A* none n/a 502.5 14 0 14 100.0 15 4 

54 M BL none n/a 93.6 251 98 232 92.4 133 40 

28 M N/A* none n/a 113.0 8 0 8 100.0 32 6 

62 F N/A* none n/a 318.9 28 0 28 100.0 3 1 

25 M BL L ATL 
hippocampal 

sclerosis 
191.9 642 347 554 86.3 435 180 

38 F BL 
declined 
surgery 

n/a 260.2 96 2 95 99.0 49 23 

 
M=male; F=female; L=left; R=right; BL = bilateral; N/A = epilepsy lateralization unclear; ATL = anterior temporal lobectomy; RNS = responsive neural stimulation 
 
* No seizures were captured for these patients. 
** No definite HEA were annotated in 1-hour recording; this patient�s data was only used in the training dataset. 
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eTable 2. Clinical Details and HEAnet Performance for Data Set 2 

 Entire Recording 1-hour Sleep Recording 

Age Sex Dx IEDs 
Sz 

Onset 
MRI 

FDG-
PET5 

HEAnet 
Detection 

Rate  
(per hr)6 

ASym

HEA 

HEAnet 
Detection 

Rate  
(per hr)7 

Expert-
Annotated 
Spike Rate 

(per hr)8 

% HEAnet 
Detections 
coinciding 
with Expert 
Detections 

TLE Diagnosis 

HEA
net 

Ex
1 

Ex
2 

39 F L TLE LT NC L MTS N/A 109.4 -0.82 67 34 17.3% x x x 

52 F L TLE LT LT L mTL DNET N/A 0.34 -1.0 0 0 N/A    

72 M L TLE LT NC 
LT radiation 
necrosis 

N/A 6.4 -0.45 3 0 0%    

47 M L TLE None LT Non-lesional N/A 355.8 -0.07 209 0 0% x   

31 F L TLE LT, LTP LT  Non-lesional N/A 598.7 -0.97 394 20 3.2% x x x 

50 M L TLE LT LT 
L mTL T2 FLAIR 
hyperintensity  

None 554 -0.99 132 47 9.0% x x x 

62 F L TLE LT > RT LT 
Mild bilateral 
mTL and anterior 
temporal atrophy 

None 56.1 0.61 14 0 0%    

56 M L TLE LT LT L MTS None 401 -0.97 317 5 1.6% x x x 

65 M L TLE LT LT L MTS LT  43.8 -0.93 23 0 0%    

27 F L TLE None LT Non-lesional N/A 1.1 0.48 1 0 0%    

65 F L TLE LT LT3  
L mTL T2 FLAIR 
hyperintensity 

LT 54.5 -0.77 3 0 0%    

57 F L TLE LT LT3  
L MTS. Diffuse 
atrophy 

LT 31.5 -0.83 7 1 12.5%   x 

41 F L TLE LT LT 
L MTS. Diffuse 
atrophy 

LT 7.6 -1.00 1 0 0%    

19 F L TLE LT LT L MTS LT 213.7 -0.87 33 315 5.7% x x x 

32 M R TLE RT NC 
R fornix <  L 
fornix 

None 175.6 0.93 91 4 0% x x x 

32 F R TLE RT > LT RT 
Small R inf 
temporal 
encephalocoele.   

RT 
 

916.6 -0.56 388 6 0.3% x x x 
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 Entire Recording 1-hour Sleep Recording 

Age	 Sex	 Dx	 IEDs	 Sz 
Onset	 MRI	 FDG-

PET5	

HEAnet 
Detection 

Rate  
(per hr)6

 

ASym

HEA 

HEAnet 
Detection 

Rate  
(per hr)7

 

Expert-
Annotated 
Spike Rate 

(per hr)8
 

% HEAnet 
Detections 
coinciding 
with Expert 
Detections 

TLE Diagnosis 

HEA
net 

Ex
1 

Ex
2 

30 M R TLE RT RT 

Hemorrhagic foci 
in R mTL and 
posterior limb of 
R internal 
capsule (trauma) 

RT 925.8 0.99 301 2 0.7% x  x 

33 M R TLE RT RT 
R mTL T2 FLAIR 
hyperintensity 

RT 399.8 0.70 323 67 11.8% x x x 

25 F R TLE RT > LT RT 

R inferior 
temporal, L 
frontal opercular, 
L corona radiata 
hamartomas 
(NF1) 

RT 64.1 0.97 3 3 0%    

24 M R TLE RT RT 

Loss of internal 
architecture of R 
hippocampus. 
Fullness of R 
amygdala/uncus.  

RT 189.8 0.91 177 5 2.2% x x x 

46 F B TLE LT 
LT, 
RT2  

Non-lesional N/A 217.5 -0.72 172 104 26.2% x x x 

40 M B TLE RT, LT NC4  Non-lesional LT 97.5 0.51 17 5 0%  x x 

47 M B TLE RT1  RT3  Non-lesional RT 366.5 0.40 95 1 1.0% x   

19 M 
B TLE 
/ L 
TLE 

RT > LT LT Non-lesional RT 1134.7 0.61 870 7 0.5% x x x 

40 F HC     1.8  0      

56 F HC     40.4  24      

78 F HC     0.8  1      

22 M HC     0.5  3      

45 M HC     16.6  12      

57 F HC     6.1  2 2    x 

49 F HC     0  0      
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 Entire Recording 1-hour Sleep Recording 

Age	 Sex	 Dx	 IEDs	 Sz 
Onset	 MRI	 FDG-

PET5	

HEAnet 
Detection 

Rate  
(per hr)6

 

ASym

HEA 

HEAnet 
Detection 

Rate  
(per hr)7

 

Expert-
Annotated 
Spike Rate 

(per hr)8
 

% HEAnet 
Detections 
coinciding 
with Expert 
Detections 

TLE Diagnosis 

HEA
net 

Ex
1 

Ex
2 

73 F HC     179.6  57      

32 M HC     1  0      

23 F HC     10.9  8 16    x 

30 M HC     0.8  2      

20 F HC     1.6  1      

52 F HC     1.6  0      

37 F HC     2.3  1      

29 M HC     8.2  8 3    x 

67 F HC     10.8  7 6    x 

21 F HC     3.0  8 7    x 

41 F HC     10.5  3      

29 F HC     6.7  3      

50 F HC     4.3  1 2    x 

 

B � bilateral; Ex � expert; HC � healthy control; L � left; NC � none captured; NF1 � Neurofibromatosis type 1; R � right; T � temporal; Sz - seizure  

 
1 Subsequent Phase 2 study showed L and R hippocampal IEDs 
2 LT were clinical seizures; RT were subclinical 
3 Subsequent Phase 2 study showed L hippocampal onset 
4 Subsequent Phase 2 study showed independent L and R hippocampal onsets 
5 Hypometabolic regions 
6 For entire recording, excludes HEAnet detections that overlapped with SpikeNet detections. Detection rate includes all detections made on both right and left sides.   
7 For 1-hour expert-annotated recordings, excludes HEAnet detections that overlapped with expert annotations of visible epileptiform discharges. Detection rate includes all detections made on both right 

and left sides.   
8 Includes all epileptiform discharges annotated by at least 1 expert 
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eTable 3. Clinical Details and HEAnet Performance for Data Set 3 
 

Age Sex Dx IEDs 
Sz 

Onset 
MRI 

FDG-
PET1 

Hours 
NREM 

HEAnet 
Detection 

Rate2 
Left (per hr) 

HEAnet 
Detection 

Rate2 
Right (per hr) 

ASymHEA 
HEAnet 

Prediction 
(TLE vs HC) 

HEAnet 
Prediction 
(laterality) 

44 M L TLE LT LT L MTS LT 4.98 17.49 2.61 -0.74 HC  

65 F L TLE LT LT Non-lesional LT 8.13 8.49 0.62 -0.86 HC  

28 M L TLE LT LT 
L post T 

Cavernoma 
N/A 6.68 35.66 2.85 -0.85 TLE L 

32 M L TLE LT LT L mTL DNET  8.00 98.38 1.75 -0.97 TLE L 

34 F L TLE LT LT L MTS LT 4.39 122.50 2.73 -0.96 TLE L 

44 M L TLE LT LT Non-lesional None 8.07 56.16 8.80 -0.73 TLE I 

75 M L TLE LT LT Non-lesional LT 39.73 141.19 17.74 -0.78 TLE L 

63 F L TLE BT LT Non-lesional LT 4.17 60.96 0.72 -0.98 TLE L 

64 M L TLE LT LT 
L mTL T2 FLAIR 

hyperintensity 
N/A 18.05 32.47 0.44 -0.97 HC  

68 F L TLE LT LT L MTS N/A 5.33 40.00 0.38 -0.98 TLE L 

52 F L TLE LT LT Non-lesional None 25.81 202.49 1.36 -0.99 TLE L 

46 M L TLE LT LT Non-lesional N/A 30.04 438.32 0.03 -1.00 TLE L 

63 M R TLE RT RT Non-lesional None 0.37 190.91 120.00 -0.23 TLE I 

37 F R TLE RT RT Non-lesional RT 3.13 2.24 10.88 0.66 HC  

33 M R TLE None RT R MTS RT 4.74 1.05 8.01 0.77 HC  

53 M R TLE RT RT Non-lesional None 8.63 34.43 46.72 0.15 TLE I 

59 M R TLE RT RT 
R T 

Encephalocele 
RT 35.93 1.25 4.54 0.57 HC  

34 F R TLE RT RT 
R MTS, 

R superior T 
Cavernoma 

RT 14.63 0.82 59.93 0.97 TLE R 

36 F B TLE 
BT 

(L>R) 
BT R MTS RT 27.01 44.47 3.22 -0.86 TLE L 

49 F B TLE BT BT L MTS None 35.64 37.57 41.66 0.05 TLE I 

26 M B TLE BT BT Non-lesional N/A 17.54 162.58 72.68 -0.38 TLE I 

45 F B TLE LT BT Non-lesional N/A 31.46 29.37 25.81 -0.06 HC 
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Age Sex Dx IEDs 
Sz 

Onset 
MRI 

FDG-
PET1 

Hours 
NREM	

HEAnet 
Detection 

Rate 
Left (per hr) 

HEAnet 
Detection 

Rate 
Right (per hr)	

ASymHEA 
HEAnet 

Prediction 
(TLE vs HC) 

HEAnet 
Prediction 
(laterality) 

30	 F	 HC	 	 	 	 	 2.60 0.77 0.38  HC  

44	 F	 HC	 	 	 	 	 1.96 1.02 2.55  HC  

32	 M	 HC	 	 	 	 	 3.96 3.28 9.09  HC  

47	 M	 HC	 	 	 	 	 1.11 3.61 0.90  HC  

60	 M	 HC	 	 	 	 	 1.02 3.93 2.95  HC  

53	 F	 HC	 	 	 	 	 0.84 1.19 0.00  HC  

58	 M	 HC	 	 	 	 	 1.20 28.33 11.67  HC  

35	 F	 HC	 	 	 	 	 1.68 0.60 0.00  HC  

27	 M	 HC	 	 	 	 	 12.83 0.23 0.55  HC  

32	 F	 HC	 	 	 	 	 0.77 3.91 1.30  HC  

26	 F	 HC	 	 	 	 	 7.28 0.82 0.41  HC  

43	 M	 HC	 	 	 	 	 1.10 0.00 1.82  HC  

19	 F	 HC	 	 	 	 	 7.61 0.39 0.39  HC  

39	 F	 HC	 	 	 	 	 0.93 0.00 3.24  HC  

62	 F	 HC	 	 	 	 	 2.75 2.18 1.82  HC  

28	 M	 HC	 	 	 	 	 1.69 2.36 0.59  HC  

20	 F	 HC	 	 	 	 	 1.40 1.43 0.71  HC  

21	 F	 HC	 	 	 	 	 1.66 3.62 0.60  HC  

52	 F	 HC	 	 	 	 	 4.73 2.54 3.17  HC  

49	 F	 HC	 	 	 	 	 19.16 16.86 206.33  TLE R 

35	 F	 HC	 	 	 	 	 27.99 0.00 0.00  HC  

43	 M	 HC	 	 	 	 	 26.37 0.00 0.34  HC  

22	 F	 HC	 	 	 	 	 16.13 0.00 0.00  HC  

52	 F	 HC	 	 	 	 	 18.29 0.05 0.11  HC  

 
B � bilateral; HC � healthy control; I � Indeterminate; L � left; R � right; T � temporal; Sz - seizure  
1 Hypometabolic regions 
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eTable 4. Performance and Hyperparameters of Individual CNNs Comprising HEAnet 
 

Model # ROC-AUC PR-AUC Structure NB Nconv f0 lr Ncycles 

1 0.856 0.327 2D 2 3 32 0.0005 30 

2 0.863 0.324 2D 2 3 32 0.0005 30 

3 0.866 0.318 2D 1 4 64 0.0005 30 

4 0.865 0.299 1D 1 4 16 0.0005 40 

5 0.853 0.296 1D 1 4 32 0.0005 60 

6 0.858 0.277 1D 1 4 32 0.0005 60 

 

 

 

 

 

eTable 5. Size of the Temporal Dimension (D) of 1-D Filters (Ki,1D) for Each Convolutional Layer 
 

 

 

 

 

 

 

Input of time 
dimension 

Ki,1D 

8 3 

16 4 

32 8 

64 16 

128 32 

256 32 
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eTable 6. CNN Hyperparameters and Range of Values Evaluated 
 

Hyperparameter Values tested 

Learning Rate (lr) 0.001 - 0.00001 

Batch Size (bs) 256, 1024 

Number of convolutional layers (Nconv) 3, 4, 5 

Number of blocks per convolutional layer (NB) 1, 2 

Number of filters in the first convolutional layer (f0) 16, 32, 64 

Filter size 2D (Ki,2D) 3, 4, 5, 7, 8, 9, 16, 32 

Input size (W0) 64, 128, 256 (0.25s, 0.5s, 1s)  

Number of input channels (C0) 14 (ipsilateral only), 19, 25 (all channels) 

Threshold for FO spike detector (thFO) 0.870, 0.923, 0.966 (Corresponding PPVs 0.7, 0.8, 0.9) 

Jitter frequency (J) 0, 5, 10 

Early Stopping Use, do not use. 

Number of cycles (Ncycles) - when no early stopping 
was used 

20, 40, 60, 80, 100 
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eTable 7. Analysis of False-Positive Detections by HEAnet (Data Set 1) 
 

 % of False Positives Additional Details 

HEA on same side 
(True positive detections) 

43.1% Definite HEA on FO electrodes (based on morphology and amplitude) ~ 23.8% 

Probable HEA on FO electrodes (less robust morphology or lower amplitude, but still 

highly likely to be HEA) ~ 19.1% 

No obvious background change 27.9% Most common: sleep spindles; high frequency, low amplitude backgrounds  

Artifact 10.3% Most common: EKG artifact; electrode pop artifact; low-amplitude myogenic artifact 

Spiky deflection 11.0% Insufficient morphology or amplitude on scalp EEG to qualify as scalp-visible 
epileptiform discharge, and no HEA on FO electrodes. Most common: small sharp 
spikes; or suspected forme fruste epileptiform discharges.   

HEA on contralateral side 7.5%  

Scalp-visible epileptiform discharge 
without HEA 

0.7%  
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eTable 8. Performance of HEAnet Across Awake and Asleep States (Data Set 1) 

 

 % Total Sleep  
in Testing Dataset 

AUCROC AUCPR
 Sensitivity at PPV ~ 0.9 4 Specificity at PPV ~ 0.9 4 Sleep Stage-specific 

PPV 

Awake N/A1 0.85 ± 0.02 0.19 ± 0.07 2 0.06 ± 0.02 0.999 ± 0.000 0.81 ± 0.10 

Asleep (all 
sleep stages) 

100% 0.89 ± 0.01 0.39 ± 0.03 3 0.13 ± 0.05 0.999 ± 0.001  

N1 5.1% 0.91 ± 0.02 0.42 ± 0.10 0.14 ± 0.05 0.999 ± 0.001 0.87 ± 0.13 

N2 59.2% 0.88 ± 0.01 0.36 ± 0.06 0.13 ± 0.05 0.999 ± 0.001 0.89 ± 0.04 

N3 15.9% 0.90 ± 0.03 0.47 ± 0.14 0.18 ± 0.09 0.998 ± 0.002 0.90 ± 0.06 

REM 18.2% 0.90 ± 0.02 0.46 ± 0.09 0.14 ± 0.07 0.999 ± 0.001 0.92 ± 0.04 

 
1 Awake data, consisting of 1-hour of awake recording from each patient, was not included as part of the expert-annotated testing data set.   

  FOnet detections were used to determine ground truth occurrence of HEA for the awake data.   
 

2 AUCPR for chance level prediction in the awake state is 0.008 (the frequency of HEA in the awake state).   
 

3 AUCPR for chance level prediction in the asleep state is 0.016 (the frequency of HEA in the asleep state).   
 

4 Results were calculated using a threshold for HEAnet that yielded a PPV ~ 0.9 in asleep recordings (combined NREM and REM).   
 

 


